Pyruvate carboxylase is an essential protein in the assembly of yeast peroxisomal oligomeric alcohol oxidase.
نویسندگان
چکیده
Hansenula polymorpha ass3 mutants are characterized by the accumulation of inactive alcohol oxidase (AO) monomers in the cytosol, whereas other peroxisomal matrix proteins are normally activated and sorted to peroxisomes. These mutants also have a glutamate or aspartate requirement on minimal media. Cloning of the corresponding gene resulted in the isolation of the H. polymorpha PYC gene that encodes pyruvate carboxylase (HpPyc1p). HpPyc1p is a cytosolic, anapleurotic enzyme that replenishes the tricarboxylic acid cycle with oxaloacetate. The absence of this enzyme can be compensated by addition of aspartate or glutamate to the growth media. We show that HpPyc1p protein but not the enzyme activity is essential for import and assembly of AO. Similar results were obtained in the related yeast Pichia pastoris. In vitro studies revealed that HpPyc1p has affinity for FAD and is capable to physically interact with AO protein. These data suggest that in methylotrophic yeast pyruvate carboxylase plays a dual role in that, besides its well-characterized metabolic function as anapleurotic enzyme, the protein fulfils a specific role in the AO sorting and assembly process, possibly by mediating FAD-binding to AO monomers.
منابع مشابه
The transcarboxylase domainof pyruvate carboxylase is essential forassemblyoftheperoxisomal £ avoenzymealcohol oxidase
Pyruvate carboxylase (Pyc1p) has multiple functions in methylotrophic yeast species. Besides its function as an enzyme, Pyc1p is required for assembly of peroxisomal alcohol oxidase (AO). Hence, Pyc1p-deficient cells share aspartate auxotrophy (Asp ) with a defect in growth on methanol as sole carbon source (Mut ). To identify regions in Hansenula polymorpha Pyc1p that are required for the func...
متن کاملOctameric alcohol oxidase dissociates into stable, soluble monomers upon incubation with dimethylsulfoxide.
Alcohol oxidase (AO) is a peroxisomal, homo-octameric flavoenzyme, which catalyzes methanol oxidation in methylotrophic yeast. Here, we report on the generation of soluble, FAD-lacking AO monomers. Using steady-state fluorescence, fluorescence correlation spectroscopy, circular dichroism and static light scattering approaches, we demonstrate that FAD-lacking AO monomers are formed upon incubati...
متن کاملAlcohol oxidase: a complex peroxisomal, oligomeric flavoprotein.
Alcohol oxidase (AO) is the key enzyme of methanol metabolism in methylotrophic yeast species. It catalyses the first step of methanol catabolism, namely its oxidation to formaldehyde with concomitant production of hydrogen peroxide. In its mature active form, AO is a molecule of high molecular mass (600 kDa) that consists of eight identical subunits, each of which carry one non-covalently boun...
متن کاملFlavin adenine dinucleotide binding is the crucial step in alcohol oxidase assembly in the yeast Hansenula polymorpha.
We have studied the role of flavin adenine dinucleotide (FAD) in the in vivo assembly of peroxisomal alcohol oxidase (AO) in the yeast Hansenula polymorpha. In previous studies, using a riboflavin (Rf) autotrophic mutant, an unequivocal judgement could not be made, since Rf-limitation led to a partial block of AO import in this mutant. This resulted in the accumulation of AO precursors in the c...
متن کاملConformational transitions accompanying oligomerization of yeast alcohol oxidase, a peroxisomal flavoenzyme.
Alcohol oxidase (AO) is a homo-octameric flavoenzyme which catalyzes methanol oxidation in methylotrophic yeasts. AO protein is synthesized in the cytosol and subsequently sorted to peroxisomes where the active enzyme is formed. To gain further insight in the molecular mechanisms involved in AO activation, we studied spectroscopically native AO from Hansenula polymorpha and Pichia pastoris and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology of the cell
دوره 14 2 شماره
صفحات -
تاریخ انتشار 2003